
	
	

	

Best	Practices		
for	Dynamic	Testing	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	



 

Copyright	©	2016	Anti-Malware	Testing	Standards	Organization,	Inc.		All	rights	reserved.		
No	part	of	this	document	may	be	reproduced	in	any	form,	in	an	electronic	retrieval	system	or	otherwise,	without	the	prior	

written	consent	of	the	publisher.	

2	

	 
Notice	and	Disclaimer	of	Liability	Concerning	the	Use	of	AMTSO	Documents	

This	document	is	published	with	the	understanding	that	AMTSO	members	are	supplying	this	information	
for	general	educational	purposes	only.		No	professional	engineering	or	any	other	professional	services	or	
advice	 is	being	offered	hereby.	 	Therefore,	you	must	use	your	own	skill	and	judgment	when	reviewing	
this	document	and	not	solely	rely	on	the	information	provided	herein.	

AMTSO	believes	that	the	information	in	this	document	is	accurate	as	of	the	date	of	publication	although	
it	has	not	verified	its	accuracy	or	determined	if	there	are	any	errors.		Further,	such	information	is	subject	
to	change	without	notice	and	AMTSO	is	under	no	obligation	to	provide	any	updates	or	corrections.	

You	understand	and	agree	that	 this	document	 is	provided	to	you	exclusively	on	an	as-is	basis	without	
any	representations	or	warranties	of	any	kind	whether	express,	 implied	or	statutory.	 	Without	 limiting	
the	 foregoing,	 AMTSO	 expressly	 disclaims	 all	 warranties	 of	 merchantability,	 non-infringement,	
continuous	operation,	completeness,	quality,	accuracy	and	fitness	for	a	particular	purpose.	

In	no	event	shall	AMTSO	be	liable	for	any	damages	or	losses	of	any	kind	(including,	without	limitation,	
any	 lost	 profits,	 lost	 data	 or	 business	 interruption)	 arising	 directly	 or	 indirectly	 out	 of	 any	 use	 of	 this	
document	 including,	 without	 limitation,	 any	 direct,	 indirect,	 special,	 incidental,	 consequential,	
exemplary	 and	 punitive	 damages	 regardless	 of	 whether	 any	 person	 or	 entity	 was	 advised	 of	 the	
possibility	of	such	damages.		

This	document	 is	protected	by	AMTSO’s	 intellectual	property	rights	and	may	be	additionally	protected	
by	the	intellectual	property	rights	of	others.			

	

	 	



 

Copyright	©	2016	Anti-Malware	Testing	Standards	Organization,	Inc.		All	rights	reserved.		
No	part	of	this	document	may	be	reproduced	in	any	form,	in	an	electronic	retrieval	system	or	otherwise,	without	the	prior	

written	consent	of	the	publisher.	

3	

Best	Practices	for	Dynamic	Testing	
Introduction		

This	 document	 describes	 best	 practices	 for	 the	dynamic	 testing	 of	 host-based	 anti-malware	products,	
where	dynamic	testing	means	tests	where	a	PC	is	exposed	to	a	live	threat	(for	example,	by	attempting	to	
execute	the	malware)	as	part	of	the	test.	This	type	of	test	is	a	more	realistic	test	of	product	efficacy	than	
standard	static	 tests	 (for	example,	on-demand	scanning),	as	 it	directly	mimics	malware	executing	on	a	
victim’s	machine.	While	dynamic	 testing	 is	 the	only	way	 to	 test	 some	anti-malware	 technologies,	 it	 is	
appropriate	as	a	test	methodology	for	all	types	of	anti-malware	products.			

Unfortunately,	this	type	of	test	is	more	complex	to	operate	than	static	tests,	with	many	more	issues	to	
be	considered.	This	document	seeks	to	summarize	best	practices	and	provide	guidance	to	help	testers	
address	those	 issues.	The	following	sections	cover	reproducibility,	product	selection,	sample	selection,	
testing	environment,	 logging	and	auditing,	measurements	of	 success,	and	 the	handling	of	popups	and	
events	 requiring	 user	 interaction.	 Two	 examples	 of	 test	 methodology	 are	 given	 at	 the	 end	 of	 the	
document.		

This	document	 is	an	extension	to	the	AMTSO	Fundamental	Principles	of	Testing	document	available	at	
www.amtso.org.			

Reproducibility		

Unlike	static	tests,	dynamic	tests	are	inherently	difficult	to	reproduce,	meaning	that	the	same	test	run	at	
different	 times	 may	 produce	 different	 results.	 This	 variability	 can	 be	 caused	 by	 changes	 in	 vendors’	
products	 (for	 example	 as	 signature	 detections	 are	 updated),	 and	 also	 by	 changes	 to	 the	 malware’s	
environment.	 Some	 malware	 will	 only	 operate	 properly	 if	 certain	 external	 resources	 (such	 as	 NTP	
servers,	 banking	website	 pages,	 drop	 sites)	 are	 available.	While	 it	 is	 possible	 to	mimic	 some	of	 these	
factors	 in	 a	 test	 environment,	 it	 is	 difficult	 to	 reproduce	 them	with	 complete	 accuracy,	 and	 the	 test	
environment	can	become	 increasingly	artificial.	This	variability	means	that	 it	 is	difficult	 to	draw	strong	
conclusions	from	any	single	test	run.		

There	 are	 two	 defenses	 for	 the	 tester	 against	 this	 variability.	 The	 first	 is	 to	 collect	 enough	 logs	 and	
information	to	verify	what	happened	in	the	test.	To	show,	for	example,	that	malware	x	tested	on	day	y	
against	product	z	did	indeed	take	actions.	The	second	is	to	use	sufficient	samples,	and	repeat	tests	over	
time	(with	different	sample	sets)	so	that	inconsistencies	in	malware	behavior	are	less	likely	to	skew	the	
results.	For	example,	fresh	malware	could	be	tested	on	the	day	that	it	was	obtained	over	the	period	of	a	
month,	and	the	daily	detection	rates	or	trends	in	performance	compared.			

Product	Selection			

Sometimes	 anti-malware	 protection	 is	 incorporated	 in	 suites	 of	 products,	 while	 others	 are	 found	 in	
standalone	products.	The	tester	should	be	aware	of	these	differences	and	choose	products	carefully	to	
allow	reasonably	appropriate	comparative	tests.	One	way	to	discover	these	differences	would	be	to	use	



 

Copyright	©	2016	Anti-Malware	Testing	Standards	Organization,	Inc.		All	rights	reserved.		
No	part	of	this	document	may	be	reproduced	in	any	form,	in	an	electronic	retrieval	system	or	otherwise,	without	the	prior	

written	consent	of	the	publisher.	

4	

vendor	claims	as	a	basis	for	choosing	products,	e.g.	 if	vendors	claim	that	their	products	handle	x,	then	
it’s	reasonable	to	test	multiple	products	that	cover	x.		

Sample	Selection		

In	 any	 test,	 sample	 selection	 is	 important.	 However,	 for	 dynamic	 tests	 the	 sample	 set	 should	 be	
evaluated	according	 to	 the	 following	criteria.	 In	general,	 the	quality	of	 the	samples	 is	more	 important	
than	the	quantity.		

1. Functionality.	 To	 be	 a	 good	 test	 of	 protection,	 the	malware	 sample	 needs	 to	 be	 viable.	 It	 is	
important	to	choose	samples	that	“work”	(corrupted	or	truncated	samples,	for	instance,	are	not	
valid	test	material)	and	to	verify	that	the	samples	did	actually	do	something	malicious	in	the	test	
environment.			

2. Diversity.	Often	dynamic	testing	will	be	carried	out	on	a	smaller	sample	set	than	other	tests.	It	is	
thus	more	 important	 that	 the	 sample	 set	 is	diverse.	Diversity	 in	 this	 sense	means	both	 in	 the	
variety	of	malware	 families	 tested	 (e.g.	 50	 variants	of	RBot	would	not	be	diverse),	 and	 in	 the	
underlying	 behavior	 of	 the	 malware.	 For	 example,	 it	 doesn’t	 make	 sense	 to	 test	 for	 general	
efficacy	using	a	test	set	that	consists	of	50	dialers.			

3. Relevance.	The	prevalence	of	malware	in	the	field	is	important	to	take	into	account	in	creating	a	
relevant	sample	set.		

4. Freshness.	An	important	aspect	of	any	technology	is	zero-day	protection.	This	is	best	evaluated	
using	fresh	and	currently	relevant	threats.	Thus	the	age	of	samples	needs	to	be	considered.			

False	Positive	Testing		

To	provide	a	balanced	test	of	user	experience,	tests	should	include	looking	for	false	positives	by	testing	
against	non	malicious	programs.	These	programs	should	cover	the	set	of	common	operations	that	users	
undertake	 on	 their	 machines,	 e.g.	 installing	 applications,	 updating	 applications,	 running	 applications,	
applying	operating	system	patches	and	installing	and	using	browser	plugins.	Installed	applications	should	
be	run	to	ensure	that	they	function	correctly.		

Testing	Environment		

In	dynamic	tests,	the	performance	of	products	is	strongly	determined	by	the	behavior	of	the	malware,	
and	 malware	 behavior	 is	 itself	 strongly	 determined	 by	 the	 environment	 in	 which	 it	 runs.	 It	 is	 thus	
important	to	create	a	reasonable	runtime	environment	in	order	to	get	good	test	results.	Environment	in	
this	case	means	for	instance	the	operating	system	of	the	machine,	whether	it	is	a	real	or	virtual	machine,	
the	network	connectivity,	how	the	malware	is	launched,	etc.	There	is	no	“right”	environment,	so	testers	
should	 be	 aware	 of	 the	 tradeoffs	 in	 selecting	 a	 particular	 environment	 and	 how	 that	 might	
(inadvertently)	bias	test	results.	The	following	covers	some	of	the	major	aspects:		

Use	of	Virtual	Machines		

Many	 malware	 will	 not	 exhibit	 their	 full	 range	 of	 behavior	 in	 virtual	 environments	 (e.g.	 VMware	 or	
Virtual	 PC).	 In	 addition,	 the	 use	 of	 some	 products	 is	 not	 supported	 in	 virtual	 environments.	 The	



 

Copyright	©	2016	Anti-Malware	Testing	Standards	Organization,	Inc.		All	rights	reserved.		
No	part	of	this	document	may	be	reproduced	in	any	form,	in	an	electronic	retrieval	system	or	otherwise,	without	the	prior	

written	consent	of	the	publisher.	

5	

alternative	 to	 using	 virtual	 machines	 is	 using	 real	 machines,	 which	 is	 more	 technically	 complex	 and	
awkward	 to	automate.	 In	 spite	of	 these	difficulties,	using	 real	machines	 is	 recommended	 for	dynamic	
tests.	To	help	with	the	technical	difficulty,	AMTSO	will	encourage	participating	members	to	make	useful	
testing	 tools	 openly	 available	 to	 all	 other	 members.	 Testers	 should	 always	 disclose	 what	 types	 of	
machines	were	used	in	tests.		

Network			

Many	 forms	 of	 malware	 and	 some	 products	 require	 network	 connectivity	 in	 order	 to	 run	 with	 full	
functionality.	Thus,	testing	requires	allowing	access	to	the	Internet	from	test	machines.	However,	this	is	
dangerous	as	the	malware	might	be	able	to	spread	to	other	machines	or	cause	other	damage.	There	are	
two	 common	 approaches	 to	 dealing	 with	 this	 issue.	 The	 first	 is	 to	 allow	 network	 connectivity,	 but	
restrict	the	protocols	allowed.	For	example,	a	common	arrangement	is	to	allow	http	(web)	traffic	access	
to	the	Internet,	but	block	all	other	protocols.	Normally	this	is	accomplished	at	the	gateway	rather	than	
on	the	test	machine.	An	alternative	is	to	create	a	virtual	Internet	(also	known	as	a	Truman	box)	where	
fake	replies	are	sent	to	all	network	requests.	Another	alternative	is	to	use	a	slow	network	link	(e.g.	ISDN	
or	modem	access	instead	of	DSL).		

There	is	no	“right”	setup,	so	testers	should	make	an	informed	choice	and	document	the	setup	in	the	test	
methodology.		

Launching	the	Malware		

Products	may	 take	 into	 account	 how	 the	malware	 infects	 a	machine	 and	 be	 tuned	 to	 be	 sensitive	 to	
common	infection	vectors,	for	example	drive	by	downloads.	How	the	malware	is	started	can	thus	affect	
product	performance.	A	guiding	principle	here	is	that	the	malware	should	be	executed	as	it	would	have	
been	delivered	were	it	a	real	infection.	For	example,	if	a	specific	piece	of	malware	originates	as	an	HTTP	
download,	the	test	should	present	the	malware	via	its	native	download	protocol	rather	than	executing	
locally.	This	can	be	difficult	to	implement,	so	a	weaker	alternative	is	to	manually	introduce	the	malware	
and	vary	the	ways	that	it	is	launched.				

Logging/Auditing		

Since	 in	dynamic	 tests,	 the	behavior	of	 the	malware	 is	 crucial	 to	how	the	products	perform,	 it	 is	 very	
important	 for	 the	 tester	 to	have	adequate	 logging	and	auditing	of	how	the	 test	proceeds.	At	 the	very	
least	this	should	cover			

1. The	actions	the	malware	takes	on	the	infected/compromised	machine		

2. Modifications	made	to	files,	registry,	and	system	areas				

3. Traces	of	network	activity		

Measure	of	Success			

Because	dynamic	tests	require	the	execution	of	malware,	and	malware	can	have	many	different	effects	
on	 a	 system	 (such	 as	 installed	 files,	 configuration	 changes,	 information	 leakage,	 and	 so	 on),	 it	 is	



 

Copyright	©	2016	Anti-Malware	Testing	Standards	Organization,	Inc.		All	rights	reserved.		
No	part	of	this	document	may	be	reproduced	in	any	form,	in	an	electronic	retrieval	system	or	otherwise,	without	the	prior	

written	consent	of	the	publisher.	

6	

important	that	the	definition	of	success	is	carefully	considered.	There	are	a	variety	of	ways	to	measure	
success,	some	of	which	may	be	more	relevant	to	a	particular	test	than	others.	These	measures	include:		

• Detection.	Did	the	product	detect	(report	or	log)	anything?		

• Removal.	Were	there	any	files	or	configuration	changes	(e.g.	registry	modifications)	remaining	
after	the	product	has	handled	the	malware?	Ways	in	which	this	could	be	applied	range	from	a	
strict	interpretation	(flagging	any	and	all	changes),	to	ignoring	(for	example)	junk	files	and	data	
files	 created	 or	 added,	 configuration	 settings	 that	 have	 no	 actual	 function,	 and	 so	 on.	 	 Some	
approaches	may	disable	malware,	 rendering	 it	 incapable	of	doing	 further	damage,	rather	than	
removing	it,	so	this	approach	should	be	considered	in	judging	success	or	failure.		

• Persistence	 (Activity/Survival	 after	 reboot).	Was	 the	malware	 active	 (running	 in	memory),	 or	
configured	to	survive	reboot	after	the	product	handled	the	malware?	This	is	a	weaker,	but	more	
attainable	form	of	the	previous	point	above.		

• Damage.	Did	the	malware	successfully	compromise	the	machine?	This	is	particularly	relevant	for	
information	 stealing	 malware,	 where	 some	 personal	 information	 may	 have	 been	 altered,	
removed	or	leaked	from	the	machine	even	if	the	malware	was	successfully	blocked.	While	this	
can	be	a	good	measurement	of	success,	it	is	often	difficult	to	measure	in	practice.			

Popups	and	User	Interactions		

Many	products	use	a	popup	or	other	window	to	ask	the	user	for	direction	on	how	to	proceed.	This	can	
cause	confusion	in	test	results	(for	example,	if	the	product	asks	for	permission	to	block	a	threat,	and	the	
tester	 always	 says	 no,	 then	 the	 product’s	 performance	 will	 appear	 very	 different	 from	 if	 the	 tester	
always	clicks	to	block).	The	most	important	guidelines	for	handling	popups	and	user	actions	are		

1. Policy.	 Testers	 should	 decide	 a	 policy	 on	 how	 to	 handle	 user	 interactions.	 For	 example,	 they	
could	 choose	 to	 answer	 popups	 in	 the	 most	 favorable	 way	 to	 the	 product,	 or	 in	 the	 least	
favorable	way.	The	policy	should	be	explicitly	described	in	the	test	report.		

2. Consistency.	Once	a	policy	has	been	decided,	they	should	apply	that	policy	consistently	across	
all	tests	(for	example,	applied	to	both	false	positive	and	detection	tests)		

3. Reporting.	 The	 tester	 should	 measure	 and	 report	 how	 many	 interactions	 with	 the	 user	 the	
products	require.	This	will	allow	consumers	of	the	report	to	determine	what	sort	of	product	it	is	
(e.g.	is	it	effective,	but	very	chatty;	effective	but	less	intrusive	etc.).	There	are	a	number	of	broad	
classes	of	popup,	which	should	be	reported	separately.	For	instance:		

• Forgiveness	–	the	product	takes	an	action	without	requiring	interaction,	then	reports	to	the	
user	that	it	has	been	done			

• Permission	–	the	product	prompts	for	permission	or	a	decision	before	taking	an	action		

• Notification	 –	 notifications	 in	 general,	 perhaps	 differentiating	 between	 those	 that	 require	
user	interaction	and	those	that	do	not.			

	



 

Copyright	©	2016	Anti-Malware	Testing	Standards	Organization,	Inc.		All	rights	reserved.		
No	part	of	this	document	may	be	reproduced	in	any	form,	in	an	electronic	retrieval	system	or	otherwise,	without	the	prior	

written	consent	of	the	publisher.	

7	

Dynamic	Test	Styles		

This	section	describes	two	common	testing	styles	for	dynamic	testing.	This	is	not	an	exhaustive	list,	and	
should	be	used	as	a	source	of	inspiration	for	testers.			

The	first	style	is	the	“one	at	a	time”	approach.	Here	machines	are	set	up	with	a	single	vendor’s	product	
installed,	a	single	sample	of	malware	is	introduced,	and	after	the	product	has	had	a	chance	to	detect	and	
remove	 it,	 the	 state	 of	 the	machine	 is	 analyzed	 to	 ascertain	whether	 the	malware	was	 detected	 and	
removed	successfully.	After	the	test	the	machine	is	reverted	to	its	pristine	state	and	the	test	repeated	
for	the	next	malware.	This	approach	is	precise	but	can	be	very	time	consuming.	The	analysis	should	at	
the	 very	 least	measure	 any	 changes	 to	 the	 file	 system	 (files	 added,	 removed	or	modified)	 and	 to	 the	
registry	configuration	as	a	consequence	of	the	malware	being	run	and	being	handled	by	the	product.		

The	second	style	would	be	“many	at	a	 time”,	having	 the	same	general	approach	but	 running	multiple	
pieces	of	malware	at	a	time.	This	 is	 less	precise,	but	more	efficient	 in	terms	of	analysis.	An	interesting	
variation	on	this	is	to	obtain	the	malware	by	causing	the	machine	to	visit	a	large	number	of	suspicious	
web	 sites,	 in	 the	 hope	 of	 its	 being	 infected,	 for	 example	 by	 using	 a	 script	 to	 launch	 the	 browser	
repeatedly.	After	 the	sites	have	all	been	visited,	 the	machine	can	be	analyzed	to	see	how	successfully	
the	vendor’s	product	protected	the	machine	from	infection.	This	test	is	a	good	simulation	of	a	common	
infection	vector	 (drive	by	downloads).	One	caveat	of	this	approach	 is	 that,	partly	due	to	the	efforts	of	
malware	 researchers,	 malicious	 servers	 may	 not	 serve	 the	 same	 (or	 any	 malicious	 code)	 if	 multiple	
requests	are	made.	In	this	test	it	is	hard	to	guarantee	that	each	vendor’s	product	will	be	exposed	to	the	
same	 threats	 so	 it	 is	 important	 to	both	use	 a	 diverse	 list	 of	 suspicious	 sites,	 and	 to	 repeat	 the	 test	 a	
number	of	times	to	see	trends	in	performance.			

______________________________________________________________________________	

This	document	was	adopted	by	AMTSO	on	October	31,	2008	

	


